Deterministic Rendezvous with Detection Using Beeps

نویسندگان

  • Samir Elouasbi
  • Andrzej Pelc
چکیده

Two mobile agents, starting at arbitrary, possibly different times from arbitrary nodes of an unknown network, have to meet at some node. Agents move in synchronous rounds: in each round an agent can either stay at the current node or move to one of its neighbors. Agents have different labels which are positive integers. Each agent knows its own label, but not the label of the other agent. In traditional formulations of the rendezvous problem, meeting is accomplished when the agents get to the same node in the same round. We want to achieve a more demanding goal, called rendezvous with detection: agents must become aware that the meeting is accomplished, simultaneously declare this and stop. This awareness depends on how an agent can communicate to the other agent its presence at a node. We use two variations of the arguably weakest model of communication, called the beeping model, introduced in [8]. In each round an agent can either listen or beep. In the local beeping model, an agent hears a beep in a round if it listens in this round and if the other agent is at the same node and beeps. In the global beeping model, an agent hears a loud beep in a round if it listens in this round and if the other agent is at the same node and beeps, and it hears a soft beep in a round if it listens in this round and if the other agent is at some other node and beeps. We first present a deterministic algorithm of rendezvous with detection working, even for the local beeping model, in an arbitrary unknown network in time polynomial in the size of the network and in the length of the smaller label (i.e., in the logarithm of this label). However, in this algorithm, agents spend a lot of energy: the number of moves that an agent must make, is proportional to the time of rendezvous. It is thus natural to ask if bounded-energy agents, i.e., agents that can make at most c moves, for some integer c, can always achieve rendezvous with detection as well. This is impossible for some networks of unbounded size. Hence we rephrase the question: Can bounded-energy agents always achieve rendezvous with detection in boundedsize networks? We prove that the answer to this question is positive, even in the local beeping model but, perhaps surprisingly, this ability comes at a steep price of time: the meeting time of bounded-energy agents is exponentially larger than that of unrestricted agents. By contrast, we show an algorithm for rendezvous with detection in the global beeping model that works for bounded-energy agents (in bounded-size networks) as fast as for unrestricted agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic symmetric rendezvous with tokens in a synchronous torus

In the rendezvous problem, the goal for two mobile agents is to meet whenever this is possible. In the rendezvous with detection problem, an additional goal for the agents is to detect the impossibility of a rendezvous (e.g., due to symmetrical initial positions of the agents) and stop. We consider the rendezvous problem with and without detection for identical anonymous mobile agents (i.e., ru...

متن کامل

Mobile Agent Rendezvous in a Synchronous Torus

We consider the rendezvous problem for identical mobile agents (i.e., running the same deterministic algorithm) with tokens in a synchronous torus with a sense of direction and show that there is a striking computational difference between one and more tokens. More specifically, we show that 1) two agents with a constant number of unmovable tokens or with one movable token each cannot rendezvou...

متن کامل

Polynomial Deterministic Rendezvous in Arbitrary Graphs

The rendezvous problem in graphs has been extensively studied in the literature, mainly using a randomized approach. Two mobile agents have to meet at some node of a connected graph. We study deterministic algorithms for this problem, assuming that agents have distinct identifiers and are located in nodes of an unknown anonymous connected graph. Startup times of the agents are arbitrarily decid...

متن کامل

Counting in One-Hop Beeping Networks

We consider networks of processes which interact with beeps. In the basic model defined by Cornejo and Kuhn [7], which we refer to as the BL variant, processes can choose in each round either to beep or to listen. Those who beep are unable to detect simultaneous beeps. Those who listen can only distinguish between silence and the presence of at least one beep. Beeping models are weak in essence...

متن کامل

Mobile Agent Rendezvous in a Ring

In the rendezvous search problem, two mobile agents must move along the n nodes of a network so as to minimize the time required to meet or rendezvous. When the mobile agents are identical and the network is anonymous, however, the resulting symmetry can make the problem impossible to solve. Symmetry is typically broken by having the mobile agents run either a randomized algorithm or different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015